

Acoustics - Knowledge Organiser

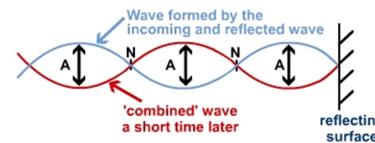
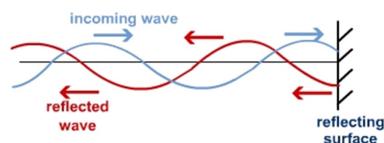
GLOSSARY

Absorption Coefficient (a)	A measurement of how effective a material is at absorbing sound
Constructive Interference	The increase in amplitude across specific frequencies that occurs when two waves interact
Destructive Interference	The decrease in amplitude across specific frequencies that occurs when two waves interact

ACOUSTICS

- The study of acoustics allows for the understanding of how sound interacts in a space
- Different materials have different levels of absorption, measured by their **absorption coefficient (a)**
 - If $a = 1$, all sound would be completely **absorbed** by the material
 - If $a = 0$, all sound would be completely **reflected** by the material
- The **more reflective** the materials in a room are, the **longer the reverb time (RT_{60})**

REFLECTION, ABSORPTION AND DIFFUSION

When a wave is **reflected**, some of it will **bounce off** the material's surface

When a wave is **absorbed**, some of its **energy is absorbed** by the material

When a wave is **diffused**, it is **scattered** from angled surfaces and reflected over a wide area

STANDING WAVES

- Some reflections can cause either an increase or decrease in amplitude for certain frequencies
- An increase in amplitude is caused by the incoming and reflected wave being in phase and exhibiting constructive interference
- A decrease in amplitude is caused by the incoming and reflected wave being out of phase and exhibiting destructive interference
- Acoustic treatment is used in rooms to help lessen the effect of standing waves