
Sequencing - Knowledge Organiser

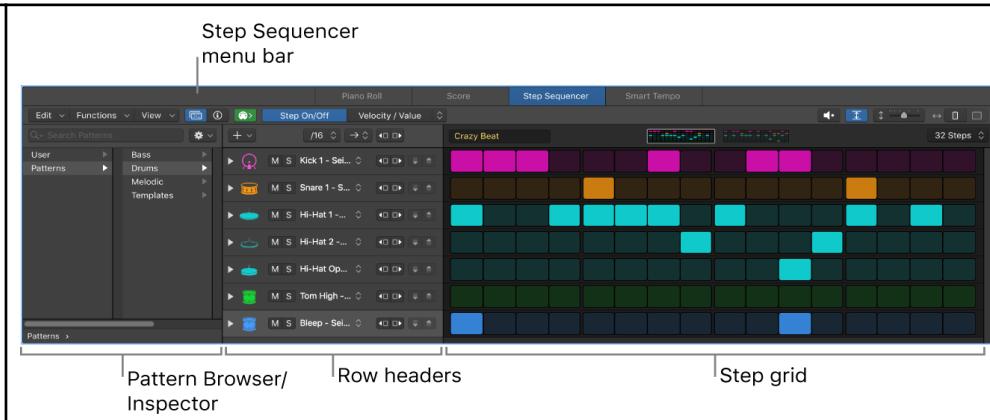
GLOSSARY

CV (Control Voltage)/Gate	An analogue method of triggering notes on a sequencer
Quantisation	Moves the timing of the beginning of a note to the nearest grid division

QUANTISE VALUES

- The numbers on quantise settings refer to the smallest divisions on the grid the MIDI notes will snap to
- The bottom number in a quantise resolution determines how many of a note can fit into one bar of 4/4

PERCENTAGE QUANTISE


- Percentage quantise is used to keep some of the music's natural flexibility in timing
- The notes are moved a percentage towards the hard quantise position

SWING QUANTISE

- Swing quantise is used to add a swung feel to straight quavers/semiquavers
- Swing quantise works by slightly delaying the second note in a pair of quavers/semiquavers
- The strength of the swing can be adjusted

STEP SEQUENCING

- Notes are entered into a sequencer's memory one at a time onto a grid/series of buttons
- Step sequencers were built into many analogue synthesisers in the 1970s

ANALOGUE SEQUENCERS

- Use CV/gate signals to trigger a note on a sequencer
 - A voltage is sent from the sequencer to control the opening and closing of a gate to start and stop a note

Limitations:

- Limited number of steps and limited polyphony
 - Analogue sequencers are typically monophonic and usually only have 8, 16 or 32 steps
 - Makes it difficult to create more complex, evolving sequences
- Lack of precision
 - Analogue sequencers rely on circuitry to generate sequences, which can lead to imprecise tuning and timing
- Lack of storage
 - Sequences cannot be stored like they can on digital sequencers
- Limited control over parameters
 - Parameters such as pitch, gate length and velocity had limited room for variation
- Hard to sync with other devices
 - Analogue sequencers rely on clock signals as opposed to MIDI and other digital synchronisation methods

DIGITAL SEQUENCERS

- Use a series of MIDI messages stored in a digital format
- Digital sequencers were often combined and used in conjunction with synths and samplers

Limitations (Early Digital Sequencers):

- Limited storage capacity
 - Early digital sequencers had limited memory and could only store a small number of sequences or patterns
- Limited sequencing options
 - Some early digital sequencers only allowed for linear sequencing, meaning that each step had to be programmed in a specific order
- Lack of real-time control
 - Early digital sequencers often required the user to program the entire sequence in advance, which made it difficult to make changes on the fly during live performances
- Complex user interfaces
 - Early digital sequencers often had complex user interfaces that required a lot of time and effort to learn and use effectively
- High cost
 - Early digital sequencers were relatively expensive, which limited their availability to professional musicians and studios